Large-span Bamboo Fiber-based Composites, Part I: A Prediction Model based on the Lucas-Washburn Equation Describing the Resin Content of Bamboo Fiber Impregnated with Different PVAC/PF Concentrations

Haidong Li, Fuming Chen, Haitao Cheng, Jianchao Deng, Ge Wang, Fengbo Sun


To predict the resin absorbing content of bamboo bundle fiber, a model relating to the soaking time and mass ratio of polyvinyl acetate (PVAC) adhesive to phenol formaldehyde (PF) resin defined on the basis of the Lucas-Washburn equation was proposed. Various dipping times and different PVAC/PF ratios were investigated in the experiment. Variance analysis revealed that the resin absorbing content was significantly associated with the ratio of PVAC/PF. However, the soaking time had a significant effect on bamboo fiber resin absorbing content from 0 s to 70 s and had an insignificant effect after 70 s. The results showed that the model proposed could accurately predict the resin absorbing content for bamboo bundle fiber impregnated in different PVAC/PF levels. The comparison of theoretical calculations with experimental results revealed that the residual sum of square and root mean squared error were relatively low, and the correlation coefficients and coefficients of determination were all over 0.95.


Bamboo bundle fiber; Lucas-Washburn equation; Soaking time; PVA C/PF mass ratio

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126