Formation of Carbonyl and Carboxyl Groups on Cellulosic Pulps: Effect on Alkali Resistance

Jordan Perrin, Frédéric Pouyet, Christine Chirat, Dominique Lachenal


Ozone bleaching generates carbonyl groups on the cellulose polymer when applied to unbleached kraft pulps. This suggests that pulp fully bleached with a totally chlorine-free (TCF) sequence may contain more oxidized groups than standard elemental chlorine-free (ECF) bleached pulp. A fully bleached pulp was treated with sodium hypochlorite to form oxidized groups (mostly carbonyls) on the pure carbohydrates, which were investigated during subsequent alkaline treatment. Carbonyl groups had a strong impact on color development during alkaline treatment. Among the carbonyls, the keto groups were the most active. This was confirmed by the behavior of carbohydrate model compounds that contained aldehyde, keto, and/or carboxyl groups when subjected to alkaline conditions. A subsequent hydrogen peroxide (P) stage effectively decreased the carbonyl content, which reduced yellowing during alkaline treatment. However, the oxidized cellulose was severely depolymerized. The addition of magnesium sulfate (Mg) into the P stage minimized depolymerization while maintaining some of the carbonyls in the carbohydrates. It is proposed that Mg cations can hinder alkaline β-elimination, possibly by forming a complex with the carbonyl groups.


Fully bleached pulp; Carbonyl groups; Carboxyl groups; Alkaline yellowing; Brightness stability; Hypochlorous acid oxidation; Ozone oxidation

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126