Experiences of Kraft Lignin Functionalization by Enzymatic and Chemical Oxidation

Anna Kalliola, Martta Asikainen, Riku Talja, Tarja Tamminen


Linear hydrophilic derivatives are expected to soften lignin and improve its utilization in composite applications. Oxidation by means of laccase in the presence of oxygen was employed in an attempt to functionalize commercial kraft lignin by vanillic acid-PEG ester and ether derivatives. Thielavia arenaria and Melanocarpus albomyces laccases at pH 6 and 8 were used. According to O2 consumption and the increase in molar mass, the tested laccases were active toward the lignin and the vanillic acid derivatives and also formed corresponding phenoxyl radicals. However, homogenous polymerization instead of cross-coupling and functionalization took place. As an alternative, lignin functionalization by the ester derivative by chemical oxidation under alkali-O2 conditions was also tested. Efficient lignin polymerization was observed. However, functionalization was not detected. Interestingly, a clear decrease in lignin glass transition temperature was obtained by an isolation procedure that included freeze-drying. This suggests that functionalization may not be necessary to induce the desired softening effect.


Kraft lignin; Vanillic acid; Polyethylene glycol; Composite; Glass transition temperature; Laccase; Oxygen; Oxidation

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126