Wood Veneer Dyeing Enhancement by Ultrasonic-assisted Treatment

Yi Liu, Jihang Hu, Jianmin Gao, Hongwu Guo, Yao Chen, Qingzheng Cheng, Brian K. Via

Abstract


To extend the potential application of ultrasonic treatment in dyeing low-quality wood to improve decorative value, wood veneers were dyed with an ultrasonic assisted dyeing system. The effects of ultrasonic power, dye concentration, dyeing time, and temperature of ultrasonic-assisted treatment on dye-uptake, chromatic value, crystallinity, thermal stability, chemical structure, and microstructure for dyed wood veneer were investigated. The dye-uptake, chromatic value, and dyeing rate were improved by ultrasonic-assisted treatment. The effect was strengthened with an increase in ultrasonic power, dye concentration, and dyeing time and temperature. After ultrasonic treatment, the dyed wood properties such as lignin degradation, crystallization and thermal stability decreased slightly, and part of the wood microstructure such as the pit membrane and parenchyma cells was mechanically damaged. Ultrasonic-assisted treatment enhanced the permeability of wood by creating new fluid channels and sorption sites, and it is believed to be an energy-efficient and environmental wood dyeing technique.

Keywords


Wood dyeing; Ultrasonic-assisted treatment; Improvement; Permeability

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126