Hydrothermal Synthesis of Mesoporous Nanocrystalline Tetragonal ZrO2 Using Dehydroabietyltrimethyl Ammonium Bromine

Peng Wang, Zhen-dong Zhao, Zong-de Wang, Shang-xing Chen, Guo-rong Fan


Mesoporous nanocrystalline tetragonal zirconias were successfully synthesized through a hydrothermal method using a novel bioresource-derived quaternary ammonium salt, dehydroabietyltrimethyl ammonium bromine (DTAB), as a templating agent. The templating agent provides a surface area (242.02 m2/g), high pore volume (0.53 cm3/g), and large average pore diameter (7.65 nm), which suggests that DTAB is a good candidate for mesostructure synthesis. The hydrothermal treatments give the materials improved thermal stabilities because of the generation of tetragonal nanocrystallites that are more stable than the bulk amorphous ones in the hydrothermal process. However, because of the absence of stabilizers, the sizes of the crystallites of the as-synthesized sample increase gradually with increasing calcination temperature. As the crystalline size of the sample rises to 25 nm, the nanocrystallites become too large to integrate well together, causing the well-organized mesostructure to collapse.


Mesoporous; Nanocrystalline materials; Tetragonal zirconia; Rigid quaternary ammonium salt

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126