Biomass-derived Activated Carbon for Rechargeable Lithium-Sulfur Batteries

Min Liu, Yong Chen, Ke Chen, Na Zhang, Xiaoqin Zhao, Fenghui Zhao, Zhifeng Dou, Xiangming He, Li Wang

Abstract


High-surface-area activated carbon (HSAAC) was synthesized by carbonizing coconut shells and subsequently activating the material with KOH. The as-prepared HSAAC had a mostly microporous structure (with small mesoporous inclusions) and exhibited a high specific surface area of 2258.7 m2g-1 and an average pore size of 2.246 nm. Sulfur was then loaded into the activated carbon (AC), and this S/HSAAC (62 wt%) was used as a cathode for Li-S batteries. These batteries delivered an initial discharge capacity of 1233 mAhg-1 at a current density of 200 mAg-1. Due to the strong absorption force of the micropores and a high pore volume, the cells retained 929 mAhg-1 with 80% capacity retention of the initial discharge after 100 cycles. Considering its low cost and ability to be produced at a large-scale, biomass-derived HSAAC is a promising electrode material that may advance high-energy rechargeable lithium-sulfur batteries toward use in practical applications.

Keywords


Biomass; Activated carbon; Li-S battery

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126