Rheological Measurement of Concentrated Pulp Fiber Suspensions in Oscillatory Shear Using a Novel Device

Di Yu, Jing-song Zeng, Ke-fu Chen, Yu-cheng Feng, Xu Yang


This paper presents a novel device based on an oscillating torsion resonator with continuously varying frequency capability to characterize the rheological properties of pulp fiber suspensions in a concentrated regime. Fiber suspensions made from unbleached wheat straw pulp at concentrations ranging from 5 wt% to 15 wt% were used. Pulp suspensions exhibit shear-thinning behavior up to a limited frequency value, after which Newtonian behavior prevails. Effects of frequency, fiber concentration, and beating process on suspension viscoelastic properties are discussed. The suspensions at different concentrations are structured in a similar way, leading to a weak gel-like structure. The storage modulus (G') of the suspension can be determined by a two-region (shear increasing – shear decreasing) profile, while loss modulus (G'') keeps increasing for the whole frequency range investigated. At the same frequency, G' and G'' increase nonlinearly with fiber concentration. The beating process brings a decrease in both G' and G''. The power-law model is used for data fitting.


Rheological measurements; Pulp fiber suspensions; Torsion resonator; Continuously varying frequency

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126