Mathematical Simulation and Design of a Rectangular Cavity of Microwave Pretreatment Equipment Used for Wood Modification

Xi Li, Jianxiong Zhang, Chunrong Liao, Hongbin Chen, Yongfeng Luo, Xianjun Li


Wood pretreated by high-intensity microwaves was theoretically studied based on the Maxwell electromagnetic field equations and the heat and mass transfer mechanism of wood. The effects of feeding modes on the temperature field uniformity and energy efficiency were studied using the finite element method, and optimized parameters of the rectangular microwave resonant cavity were achieved. The results show that the feeding modes had a great effect on the temperature field uniformity of the wood and the energy efficiency. Compared to the side single-port, the upper single-port, and the upper-under port feeding modes, the two-side ports feeding mode was the best for temperature field uniformity and energy efficiency.


Wood; Microwave pretreatment; Rectangular resonant cavity; Temperature distribution; Energy efficiency

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126