Modification of Ultra-Low Density Fiberboards by an Inorganic Film Formed by Si-Al Deposition and their Mechanical Properties

Tingjie Chen, Min Niu, Yongqun Xie, Zhenzeng Wu, Xiaozheng Liu, Lili Cai, Biaorong Zhuang

Abstract


To improve mechanical properties of ultra-low density fiberboards (ULDFs), Si-Al compounds were mixed together with fibers during preparation of ULDFs, forming a thin film on the surface of the fibers via hydrogen bonding. This work mainly optimized two proposed methods in which the inorganic thin film was assembled on the surface of fibers, in terms of its effect on the mechanical properties of fibers. Microstructural characterization (such as micromorphology and elemental distribution, chemical bonding, and crystalline phase) of Si-Al compounds and ULDFs was done to evaluate the effects. The results revealed that an inorganic thin film (probably Al2O3-SiO2) covered the surface of the fibers. Compared with the control specimen, the modulus of elasticity, modulus of rupture, and internal bond strength of the specimen treated by the sol-gel process increased from 3.87 MPa to 13.19 MPa, 0.05 MPa to 0.16 MPa, and 0.010 MPa to 0.025 MPa, respectively. Based on its higher mechanical properties, a combined sol-gel method was judged to be better for enhancement of fibers than a separate deposition method.

Keywords


Ultra-low density fiberboards; Inorganic thin film; Mechanical properties; Microstructural characterization

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126