Development of Self-Bonded Fiberboards from Fiber of Leaf Plantain: Effect of Water and Organic Extractives Removal

Catalina Alvarez-López, Orlando J. Rojas, Benjamín Rojano, Piedad Gañán


Adhesive-free fiberboards can be self-bonded through high temperature thermo-compression processes. To achieve it, treatments such as steam explosion/injection, as well as chemical and enzymatic oxidation have been implemented. However, the role of extractive components in the structure and cohesiveness of fiberboards has not been fully understood. In this work fibers of leaf plantain were treated with organic solvents and with hot water to remove the extractives, and were then employed to produce self-bonded fiberboards. Treated fibers were characterized by thermogravimetric analysis, electronic paramagnetic resonance, and antioxidant capacity. The mechanical strength of the fiberboards evaluated by three point flexural tests, decreased when fibers were extracted with aqueous solvents, and increased after treatment with organic ones. This can be explained by the effect of water extractives in reducing the initial degradation temperature, and in retaining free stable radicals generated during thermo-compression. In the case of the organic extractive fraction, this inactivates the fibers, which impairs close contact between polar groups and thus decreases the mechanical properties of the fiberboards. According to the results, it is possible to increase the mechanical properties of self-bonded fiberboards by changing the concentration of polar and low molecular weight phenolic compounds.


Extractive; Fiberboard; Lignocellulosic fiber; Self-adhesion

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126