Does Biochar Alter the Speciation of Cd and Pb in Aqueous Solution?

Liqiang Cui, Jinlong Yan, Liqiang Li, Guixiang Quan, Cheng Ding, Tianming Chen, Chuntao Yin, Junfei Gao, Qaiser Hussain

Abstract


Cadmium and lead contamination in bodies of water has been a serious concern because of risk to the environment. A laboratory experiment was initiated to investigate the efficacy of biochar (BC) in removing cadmium and lead (Cd and Pb, respectively) from solution. After absorption by BC, the fractions of Cd and Pb at different solution temperatures were measured. The adsorption data were described by Langmuir isotherm with maximum adsorption capacities of 6.36, 6.47, and 6.74 mg Cd g-1 and 50.05, 55.86, and 63.09 mg Pb g-1 at 25, 35, and 45 °C, respectively. The adsorption capacities were affected by Cd/Pb initial concentration, pH, BC particle size, BC dosage, and reaction time. Biochar adsorbed the Cd and Pb mainly as species bound with carbonate (> 50%) and organic compounds (~40%). Exchangeable and residual fractions of Cd and Pb were less than 10%. Results from this study indicate that BC is highly effective in the adsorption of the heavy metals Cd and Pb through binding with carbonates.

Keywords


Biochar (BC); Cadmium; Lead; Contaminated water; Fourier transform infrared spectroscopy

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126