The Effects of Heat Treatment with the ThermoWood® Method on the Equilibrium Moisture Content and Dimensional Stability of Wild Cherry Wood

Ayhan Aytin, Süleyman Korkut, Öner Ünsal, Nevzat Çakıcıer

Abstract


Low hygroscopicity is an important factor favoring the use of heat-treated wood materials. Hence, wild cherry (Cerasus avium (L.) Moench) wood was subjected to heat treatment with the ThermoWood® method for about 1 and 2 hours at temperatures of 190 and 212 °C in an industrial business. Then, trial samples were prepared and divided into two groups. By being conditioned in the environments of 20 °C and 65% relative humidity (WC1), 20 °C and 85% relative humidity (WC2), 20 °C and 30% relative humidity (WC3), and 23 °C and 50% relative humidity (WC4), equilibrium moisture content (EMC) and dimensional stability (DS) values of the samples in the first group were determined. The water thickness swelling (WTS) and water retention (WR) features of the samples of the second group were examined by keeping them in water both 24 and 72 h. The results show that EMC and WTS decreased with increasing treatment temperature and durations. Also, DS was improved. On the other hand, the WR values of all the samples stayed approximately the same.

Keywords


Dimensional stability; Equilibrium moisture content; ThermoWood®; Wild cherry; Water thickness swelling

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126