Multiscale Analysis on Electrical Properties of Carbon Fiber-Reinforced Wood Composites

Xiaolong Zhu, Liping Sun

Abstract


Carbon fiber was selected as a reinforcement for the manufacture of composite materials. Electrical properties of carbon fiber reinforced wood composites (CFRWCs) were studied by multiscale analysis, which is an all-rounded method to analyze CFRWCs from the macroscopic area to the microcosmic field. It was found that the insulated wood fiber materials could conduct electricity after adding a certain proportion of carbon fibers. The dielectric constants and the capacitances of CFRWCs increased gradually with increasing carbon fiber content in the composites from 55 wt.% to 75 wt.% when a certain condition prevails. However, the loss tangents and the surface resistivities of CFRWCs decreased as the carbon fiber content was increased continuously. The data of surface resistivity represented a negative growth situation with increasing temperature from 20 C to 120 C and exhibited a negative temperature coefficient (NTC) effect. The movement of electrons was also analyzed due to temperature rise.

Keywords


CFRWCs; Multiscale; Electrical properties; Atomic dynamics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126