Enhancing Lead Adsorption Capacity by Controlling the Chain Length of Alkyl Amine Grafted Lignin

Zhili Li, Duo Xiao, Yan Kong, Yuanyuan Ge


The adsorption capacity of lignin for lead can be controlled by varying the chain length of alkyl, attaching the amine to the lignin surface from C2 (ethyl) to C18 (octadecyl). Altering the chain length had a strong effect on the contribution of amine groups in the adsorption of lead ions by lignin. The adsorption capacity increased 105.0% as the chain length increased to butyl (C4); however, further chain lengths, up to C18, provided no additional benefit, and in some cases even hindered the adsorption capacity of lignin. A short-chain alkyl (C4) group enhanced the beneficial amine contributions for metal ion adsorption, which resulted from the efficient inductive effectiveness of the alkyl groups.


Adsorption; Alkyl group; Amine; Lignin; Heavy metal

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126