Effect of Graphene Oxide Treatment on the Properties of Cellulose Nanofibril Films Made of Banana Petiole Fibers

Changyan Xu, Guangjing Wang, Cheng Xing, Laurent M. Matuana, Handong Zhou

Abstract


In this study, banana petiole-based cellulose nanofibril (CNF) films treated with graphene oxide (GO) were prepared and evaluated by means of Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Tensile strengths (TS), dynamic mechanical properties, and thermal stabilities of the films were affected positively when the GO loading was less than 4.4 wt%. From these results, FTIR spectra, and SEM analyses, a strong coupling between the GO and the cellulose matrix could be concluded at lower GO loadings. The TGA and DMA results also suggested that the CNF film treated with 4.4 wt% GO had more char residue, better thermal stability, higher storage modulus, and higher retention ratio when compared to that without treatment. This work provides a new approach for more effective utilization of banana petiole as a feedstock for CNF and GO/CNF composites.

Keywords


Cellulose nanofibril film (CNF); Graphene oxide; Tensile properties; Thermal properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126