Degradation and Redeposition of the Chemical Components of Aspen Wood during Hot Water Extraction

Haiyan Chen, Yingjuan Fu, Zhaojiang Wang, Menghua Qin

Abstract


Hot water extraction (HWE) prior to pulping of wood is a promising method in constructing a platform for traditional pulping or for biorefinery processing. In this study, HWE of aspen wood at a maximum reaction temperature (Treaction) between 140 and 180 ºC was investigated to obtain an optimal extraction condition for wood-derived products. The effect of extraction temperature and reaction time on the extraction performance of the chemical constituents was evaluated, and the degradation and redeposition of lignin and carbohydrates during the HWE process were assessed. Results showed that a minimum Treaction of 160 ºC was necessary for satisfactory carbohydrate removal. The dissolution and readsorption of sugars reached a balance, such that no more sugars in pre-extraction liquor (PEL) were adsorbed on the wood surface under more severe extraction conditions. The reduction of sugars dissolved in PEL should result from the formation of furfural or its derivatives. At the final extraction stage, the dissolved lignin in PEL could redeposit on the exothecium rather than the endothecium of the wood chips.

Keywords


Hot water extraction; Degradation; Carbohydrate; Lignin; Redeposition; Biorefinery

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126