Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

John F. Hunt, Houjiang Zhang, Yan Huang

Abstract


An equivalent strain method was used to analyze and determine material relaxation properties for specimens from particleboard, high density fiberboard, and medium density fiberboard. Cantilever beams were clamped and then deflected to 11 m and held for either 2 h or 3 h, while the load to maintain that deflection was measured vs. time. Plots of load relaxation for each specimen showed similar load relaxation vs. time even though there were some slight differences in the maximum load per sample. Three models were developed to fit the relaxation data. The first model was a simple log decrement. This simple log model used only one variable, the relaxation coefficient, to describe the relaxation behavior as the log of time. The log decrement model was marginal at best in modeling the relaxation data. The second and third models, however, used equivalent strain methods. The second model assumed a combined linear-elastic spring and a Kelvin-Voigt spring-dashpot model. The third model used a combination of a linear-elastic spring (linear strain) element, a Kelvin-Voigt (spring-dashpot, visco-elastic strain) element, and a dashpot (permanent strain) element for its total configuration. Both equivalent strain models provided excellent correlations for the two lengths of time used for this series. Estimated mechanical and relaxation, or creep properties, were determined from the equivalent strain method using cantilever beam equations.

Keywords


Thin wood composites; Cantilever-beam bending; Stress relaxation; Relaxation coefficient; Equivalent strain; Kelvin model; Burgers model; Elastic strain; Visco-elastic strain; Permanent strain

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126