Catalytic Cracking of Pyrolysis Oil Derived from Rubberwood to Produce Green Gasoline Components

Abdulrahim Saad, Sukritthira Ratanawilai, Chakrit Tongurai

Abstract


An attempt was made to generate gasoline-range aromatics from pyrolysis oil derived from rubberwood. Catalytic cracking of the pyrolysis oil was conducted using an HZSM-5 catalyst in a dual reactor. The effects of reaction temperature, catalyst weight, and nitrogen flow rate were investigated to determine the yield of organic liquid product (OLP) and the percentage of gasoline aromatics in the OLP. The results showed that the maximum OLP yield was about 13.6 wt%, which was achieved at 511 C, a catalyst weight of 3.2 g, and an N2 flow rate of 3 mL/min. The maximum percentage of gasoline aromatics was about 27 wt%, which was obtained at 595 C, a catalyst weight of 5 g, and an N2 flow rate of 3 mL/min. Although the yield of gasoline aromatics was low, the expected components were detected in the OLP, including benzene, toluene, ethyl benzene, and xylenes (BTEX). These findings demonstrated that green gasoline aromatics can be produced from rubberwood pyrolysis oil via zeolite cracking.

Keywords


Pyrolysis oil; Zeolite cracking; Organic liquid product (OLP); Green gasoline-range aromatics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126