Preparation and Characterization of Polyvinyl Alcohol-Based Composite Reinforced with Nanocellulose and Nanosilica

Yern Chee Ching, Ashiqur Rahman, Kuan Yong Ching, Nazatul Liana Sukiman, Hock Chuah Cheng


This work reported the thermomechanical and morphological properties of polyvinyl alcohol (PVA) nanocomposites reinforced with nanosilica and oil palm empty fruit bunches derived nanocellulose. The nanocomposites were characterized by mechanical, thermal, XRD, optical, and morphological studies. Uniformity dispersion of the nanofillers at a 3 wt% concentration has been shown by scanning electron microscopy, whereas the changes in crystallinity were demonstrated by X-ray diffraction analysis. Addition of nanosilica resulted in increased thermal stability of PVA/nanocellulose composites due to the reduction in mobility of the matrix molecules. Visible light transmission showed that the addition of 0.5 wt% nanosilica only slightly reduced the light transmission of PVA/nanocellulose composites with 3 wt% nanocellulose. The addition of a small concentration of nanosilica successfully improved the tensile and modulus properties of PVA/nanocellulose composite films. The increases in tensile strength and thermal stability were evidence of a nanosilica contribution in PVA/nanocellulose composites, inducing reinforcement, as detected by the thermomechanical properties.


Oil palm empty fruit bunches (OPEFB); Nanocellulose; PVA; Nanosilica; Mechanical properties; Thermal stability; Optical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126