Failure Criteria for Shear Strength Evaluation of Bonded Joints According to Grain Slope under Tension Load

Edgar Vladimiro Mantilla Carrasco, Judy Norka Rodo Mantilla


Failure criteria from six theories were applied to estimate the shear strength of the adhesive line in terms of grain slope when under loaded tension stress. The shear stresses of the adhesive line as a function of the angle of the wood grain were determined by experimental tests. Specimens were obtained from 12 Eucalyptus saligna wood beams. They were prepared with varying angles of the grain (0°, 15°, 30°, 45°, 60°, 75°, and 90°) in relation to load application, following the requirements of the Brazilian standard. From the results of the six failure criteria and experimental results, robust statistical analysis was carried out; it was thus possible to adapt the models to determine the shear strength of the adhesive line as a function of the angle of the wood grain. The six mathematical models evaluated do not show statistical significance (p < 0.05) in their original format. With modifications, the models showed statistical significance only with the formulations of DIN 1052 and Karlsen.


Shear strength; Slope of wood grain; Bonded joints

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126