Stress Wave Tomography of Wood Internal Defects using Ellipse-Based Spatial Interpolation and Velocity Compensation

Xiaochen Du, Shaozhe Li, Guanghui Li, Hailin Feng, Shengyong Chen


In this paper, a novel stress wave tomography method, using spatial interpolation and velocity compensation, is proposed for the detection of internal defects in wood, based on the measured time of flight data and the assumption that stress waves propagate in straight lines in the cross-sectional area of wood. First, an improved ellipse-based spatial interpolation method is proposed, which could be used to estimate the velocity value of a grid cell by the elliptic affected zones corresponding to the nearby velocity rays. Second, because of the anisotropic property of wood, a velocity compensation method was applied to obtain more accurate input data for spatial interpolation. Then, the internal graph of the cross-section of a wood trunk could be reconstructed by the proposed algorithm. Four wood samples, with different defects, were used to test the proposed tomography method in the experiment. The results showed that the proposed method performed well and was able to resist signal interference caused by the density variation of the defective area.


Stress wave; Tomography; Wood internal defects; Spatial interpolation; Velocity compensation

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126