Optimization of Operating Conditions of a Household Up-draft Biomass Gasification Stove

Shuanghui Deng, Xuebin Wang, Houzhang Tan, Yan Li, Zhongfa Hu, Ben Niu

Abstract


Experiments were carried out with a household up-draft biomass gasification stove to investigate effects of the air distribution method on the performance of the stove. The temperature distribution along the gasifier, the producer gas composition, the stove power, and the thermal efficiency were investigated. Results showed that in the temperature distribution along the gasifier height, the highest temperature was at the bottom oxidation layer of the gasifier, in the range of 950 to 1050 °C. With increasing air quantity through the burner, the time required to boil the water first decreased and then increased, whereas the stove power and thermal efficiency increased and then decreased. The best stove performance was obtained at an optimum air distribution ratio of 0.333 between burner and gasifier air (0.794×10-3 m3/s·kg). When the burner air increased, the flame length above the burner was remarkably reduced and the flame color gradually changed from yellow-red to blue. At the optimum air distribution ratio of 0.333, the flame was blue and stable. The present study provides references for developing a more efficient biomass gasification stove.

Keywords


Biomass; Stove; Air distribution; Gasification stove; Optimization; Efficiency

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126