The Effect of Consistency and Freeness on the Yield Stress of Chemical Pulp Fibre Suspensions

Jiulong Sha, Abbas Nikbakht, Chen Wang, Hui Zhang, James Olson


To study the influence of mechanical treatments on the yield stress of chemical pulp suspensions, a traditional rheometer, coupled with local velocity measurements (ultrasonic Doppler velocimetry), was used to measure the yield stress of two types of commercial chemical pulp suspensions with different freeness values at mass concentrations (consistencies) ranging from 0.5 to 1.5%. Over the range of consistencies tested, the yield stress was found to depend on the consistency through a power law relationship for all tested samples. Moreover, the results showed that as the freeness decreased, the yield stress of hardwood suspensions increased to a maximum value then decreased. This variation in yield stress was also observed in softwood suspensions with mass concentrations above 1%. However, when the consistency was lower than 0.75%, the yield stress of softwood suspensions increased with decreasing freeness.This behaviour can be understood based on the underlying fibre properties of fibrillation, curl, and stiffness, suggesting that fibre morphology plays a significant role on the yield stress of pulp suspensions over the concentration range studied.


Yield stress; Rheology; Pulp fibre suspensions; Freeness; PFI mill

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126