Optimization of Bioethanol Production from Coffee Mucilage

Bianca Yadira Pérez-Sariñana, Antonio De León-Rodríguez, Sergio Saldaña-Trinidad, Sebastian Pathiyamattom Joseph

Abstract


A response surface methodology with 2k full factorial design was applied to obtain optimum conditions for bioethanol production using coffee mucilage (CM) as the substrate and Saccharomyces cerevisiae NRRL Y-2034 as the inoculum. CM is an agro-industrial residue mainly composed of simple sugars; the product yield and productivity process were analyzed with respect to the fermentation, pH, temperature, and the initial sugar concentration. Employing the following predicted optimum operational conditions attained the highest bioethanol production: pH 5.1, temperature 32 °C, and initial sugar concentration 61.8 g/L. The estimated bioethanol production was 15.02 g/L, and the experimental production was 16.29 g/L ± 0.39 g/L, with a bioethanol yield of 0.27 g/L and a productivity process of 0.34 g/Lh. Glycerol was the predominant byproduct of the fermentative metabolism of S. cerevisiae. The response surface methodology was successfully employed to optimize CM fermentation. In the fermentative processes with yeast, optimizing the conditions of the culture medium is needed to fully exploit the potential of the strains and maximize the production of bioethanol.

Keywords


Fermentation; Bioethanol production; Optimization

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126