Effects of Natural Chitosan as Biopolymer Coupling Agent on the Pyrolysis Kinetics of Wood Flour/ Polyvinyl Chloride Composites

Kaimeng Xu, Taian Chen, Zhifeng Zheng, Suyong Huang, Kaifu Li, Tuhua Zhong

Abstract


The thermal degradation behavior and pyrolysis kinetic models of wood flour (WF)/PVC composites before and after adding chitosan were studied using thermogravimetry (TGA) and nine common kinetic model functions (f(α)). The results indicated that the thermal degradation temperature of WF/PVC composites was delayed to a higher value after adding chitosan. The first-order reaction order (L1) model and second-order reaction order (L2) model were found to be the best reaction order functions for the description of mass loss kinetics of WF/PVC without chitosan during the first and second stages. Two L2 models were suitable for both degradation stages of WF/CS/PVC. Activation energy (E) and frequency factor (A) for WF/PVC and WF/CS/PVC corresponded to 26.05 kJ·mol-1, 4.08×103 s-1, and 40.89 kJ·mol-1, 2.11×1010 s-1 at the first degradation stage, respectively, and 97.83 kJ·mol-1, 1.11×107 s-1 and 92.88 kJ·mol-1, 1.56×1011 s-1 at the second degradation stage.

Keywords


Chitosan; Wood flour; PVC; Pyrolysis kinetic model

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126