Reactivity Improvement of Bamboo Dissolving Pulp by Xylanase Modification

Chaojun Wu, ShuFang Zhou, Ronggang Li, Daiqi Wang, Chuanshan Zhao

Abstract


A high reactivity is an essential prerequisite for dissolving pulp. In this study, xylanase modification to increase the reactivity of bamboo dissolving pulp was investigated. The original reactivity of a bamboo dissolving pulp prepared by a prehydrolysis kraft pulping process and bleached by (OP)-H-P (oxygen delignification enhanced with peroxide - sodium hypochlorite - peroxide) is very low. The reactivity of the pulp was increased drastically after xylanase modification, which lowered the pulp’s pentosan content. Simultaneously, the crystallinity index of the dissolving pulp decreased slightly after xylanase modification. The microscopic appearance of the fiber surfaces changed slightly. The average curl and kink indices were lower at a xylanase charge of 1.0 IU/g compared to the other charges, while changes to the yield loss and the degree of polymerization were negligible. The mechanism for the increased pulp reactivity is discussed.

Keywords


Bamboo dissolving pulp; Reactivity; Xylanase modification; Pentosan content

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126