Xylanase-Induced Liberation of Negatively Charged Species and Their Effect on Colloidal Interactions and the Retention of Bleached Kraft Pulp Fibers

Katja Eliisa Lyytikäinen, Kaj Backfolk

Abstract


The ability and specificity of various monocomponent endo-1-4-β-xylanases to release negatively charged species from never-dried, bleached, birch kraft pulp was studied. The effects of dissolution of these xylan-based components on pulp filtrate properties and the subsequent chemical retention were determined. The results revealed that the amount of charged species released depended on the xylanase and that the ratio of charged species released to dissolved xylan is not linear. Chemical retention tests showed that high levels of dissolved xylan interfere with the fixation of colloidal species, which was confirmed by removing the dissolved hemicelluloses. The roles of residual hemicellulose and the properties of modified fibers on chemical retention and the level of internal sizing are discussed.

Keywords


Cationic demand; Charged species; Colloidal interaction; Retention; Xylanase; Zeta potential

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126