Chlorophenol Degradation in Papermaking Wastewater through a Heterogeneous Ozonation Process Catalyzed by Fe-Mn/Sepiolite

Zheng Cheng, Rendang Yang, Bin Wang, Fei Yang


Heterogeneous Fe-Mn/sepiolite catalysts were prepared by the co-precipitation method, followed by heat treatment. The catalysts were characterized by several techniques; analysis by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) confirmed the existence of fine Fe and Mn particles in the catalysts. Compared to natural sepiolite, the specific surface area of the Fe-Mn/sepiolite catalyst was increased from 125.2 to 412.7 m2/g, as measured by Brunauer-Emmett-Teller (BET) analysis. The activity of the catalysts was evaluated by the ozonation degradation of p-chlorophenol solution, and the results showed that the catalysts were highly effective, as the removal rate of p-chlorophenol was more than 98.5%, achieved in 25 min at a 20% (w/w) Mn content. The catalysts were then used for chlorophenol degradation in papermaking wastewater through a heterogeneous ozonation process. At optimal conditions, a 98% chlorophenol removal rate and a 58% COD removal efficiency were achieved in 30 min, and pollutants in the treated wastewater were more biodegradable and less toxic than in raw water. Moreover, the prepared catalysts remained stable during successive catalytic ozonation runs. The possible reaction pathway was also proposed.


Chlorophenol; Papermaking wastewater; Heterogeneous ozonation; Sepiolite

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126