Formation of Humin and Alkyl Levulinate in the Acid-catalyzed Conversion of Biomass-derived Furfuryl Alcohol

Xueying Gao, Lincai Peng, Hui Li, Keli Chen


To avoid undesired polymerization and maximize the selectivity of alkyl levulinate from the acid-catalyzed conversion of biomass-derived furfuryl alcohol, the effects of catalyst and reaction parameters on the formations of humin and alkyl levulinate were investigated. The results show that Amberlyst 15, of moderate acidic strength, was more favorable for the selective conversion of furfuryl alcohol to alkyl levulinate, and heteropolyacids of strong acidic strength tended to promote furfuryl alcohol polymerization. Compared with water as a reaction medium, alcohol significantly lowered humin formation and enhanced the yield of the resulting products. The formations of humin and alkyl levulinate were both favored at high catalyst loadings and reaction temperatures. An augmentation in initial furfuryl alcohol concentration caused an increase in humin formation and a decrease in alkyl levulinate yield. A high alkyl levulinate yield of up to 94% (100% furfuryl alcohol conversion) was achieved at 110 °C for 4 h with 5 g/L Amberlyst 15 catalyst and an initial furfuryl alcohol concentration of 0.1 mol/L. At this point, about 5% furfuryl alcohol was polymerized to form the humin, and its polymerization occurred mainly during the initial reaction stage.


Furfuryl alcohol; Acid catalysis; Alkyl levulinate; Humin; Alcohol

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126