Dimensional Changes of Veneer Layered Materials after Cold Pressing

Vlastimil Borůvka, Milan Gaff, Marián Babiak, Marko Matúš


Dimensional changes in both non-densified and densified, thin, wooden components and layered materials after external pressing forces were released were evaluated in this work. Densification was carried out using a cold process on a semi-automatic hydraulic pressing machine. The specimens’ dimensional stabilities, focusing mainly on their residual plastic deformations, were monitored. The impacts of several factors, such as wood species, material thickness, densification degree, and their combinations, were analyzed. Results showed that, with increased degree of densification, the relative plastic deformations (pressing degree) usually decreased. With regard to the compositions explored, the best combination was a top poplar layer densified by 10% plus a bottom beech layer densified by 20%. The impacts of each of the factors on the pressing degree values proved to be significant; the least significant was the bottom beech layer thickness and degree of densification. The greatest practical benefits can be obtained using the recommended combinations of composite layers.


Veneer; Layered material; Densification; Pressing; Dimensional stability; Deformation

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126