Pyrolysis Dynamics of Biomass Residues in Hot-Stage

Ivan Bergier, Claudia Maria Branco De F Maia, Marcela Guiotoku, Paulo Paiva, Ana Paula Silva, Etelvino Henrique Novotny


Original data for mass, element, and methane dynamics under controlled pyrolysis are presented for several biomass feedstocks. The experimental system consisted of an environmental (low-vacuum) scanning electron microscopy (ESEM) with a hot-stage and energy-dispersive X-ray spectroscopy (EDS) detector. A tunable diode laser (TDL) was coupled to the ESEM vacuum pump to measure the methane partial pressure in the exhaust gases. Thermogravimetric analysis and differential thermal analysis (TG/DTA) in a N2 atmosphere was also carried out to assess the thermal properties of each biomass. It was found that biochars were depleted or enriched in specific elements, with distinct methane formation change. Results depended on the nature of the biomass, in particular the relative proportion of lignocellulosic materials, complex organic compounds, and ash. As final temperature was increased, N generally decreased by 30 to 100%, C increased by 20 to 50% for biomass rich in lignocellulose, and P, Mg, and Ca increased for ash-rich biomass. Methane formation also allows discriminating structural composition, providing fingerprints of each biomass. Biomass with low ashes and high lignin contents peaks CH4 production at 330 and 460 °C, whereas those biomasses with high ashes and low lignin peaks CH4 production at 330 and/or 400 °C.


Biochar; Agriculture; Residues; Manure; Soil fertilizer

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126