Determination of Optimal Machining Parameters of Massive Wooden Edge-Glued Panels Made of European larch (Larix decidua Mill.) using Taguchi Design Method

Sait Dundar Sofuoglu

Abstract


In this paper, the optimization of computer numerical control (CNC) machining parameters were conducted using the Taguchi design method on the surface quality of massive wooden edge glued panels (EGP) made of European larch (Larix decidua Mill). Three machining parameters and their effects on surface roughness were evaluated. These parameters included tool clearance strategy, spindle speed, and feed rate. An analysis of variance (ANOVA) was performed to identify the significant factors affecting the surface roughness (Ra and Rz). Optimum machining parameter combinations were acquired by conducting an analysis of the signal-to-noise (S/N) ratio. Optimal cutting performance for the Ra and Rz was obtained for the cutter at a tool clearance strategy of an offset 16000 rpm spindle speed and 1000 mm/min feed rate. The surface roughness, both the Ra and Rz, increased with increasing feed rate. Optimal cutting performance for Ra and Rz was obtained for a tool clearance strategy of an offset 16000 rpm spindle speed, and 1000 mm/min feed rate cutting settings. Based on the confirmation tests, Ra decreased 2.2 times and Rz 1.8 times compared to the starting cutting parameters.

Keywords


Wood machining; European larch; Taguchi design method; Surface roughness

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126