Characterization of Plant Nanofiber-Reinforced Epoxy Composites

A. F. Ireana Yusra, H. P. S. Abdul Khalil, Md. Sohrab Hossain, Yalda Davoudpour, A. A. Astimar, A. Zaidon, Rudi Dungani, A. K. Mohd Omar


In the present study, oil palm empty fruit bunch (OPEFB) fibers were taken from a 25-year-old oil palm tree. The cellulosic nanofiber (CNF) was isolated from the OPEFB using a chemo-mechanical process and utilized as reinforcement in an epoxy matrix. Various CNF loading percentages (0 to 0.75%) were applied in the epoxy matrix to explore the potential of using OPEFB-CNF as reinforcement. The morphological, mechanical, physical, and thermal characteristics of the OPEFB nanofiber-reinforced epoxy composites were evaluated. Results showed that the 0.25% and 0.5% CNF loadings were homogenously distributed and well-dispersed in the composite matrix. Conversely, agglomeration was detected in the matrix with 0.75% CNF loading. Determination of the water absorption behavior of CNF-reinforced epoxy composites at various loadings revealed that the physical properties of the composites increased with reinforcement loading. Furthermore, the analyses of the mechanical and thermal properties of the CNF-reinforced composites revealed that the incorporation of OPEFB-CNF enhanced the mechanical performance and thermal stability up to 0.5% loading.


Epoxy; Plant fiber; Nanofiber; Nanocomposite; Mechanical properties; Thermal properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126