Preparation of CMC/HEC Crosslinked Hydrogels for Drug Delivery

Xiaoxiang Wen, Dengshan Bao, Mingjie Chen, Aiping Zhang, Chuanfu Liu, Runcang Sun


A novel crosslinked hydrogel was prepared from sodium carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) using ammonium persulfate as an initiator and methylenebisacrylamide as a crosslinker for drug delivery. The chemical structure of the copolymer was characterized by Fourier transform infrared spectroscopy and X-ray diffraction, and the morphology was observed under scanning electron microscopy. The swelling behavior of the hydrogels confirmed the pH- and ionic strength-sensitivity. The reversibility of the hydrogels and the on-off switching behavior were also investigated, providing the potential for drug delivery. The release of bovine serum albumin (BSA) from drug-loaded hydrogels was studied at different pH conditions to simulate gastrointestinal conditions. The amount of BSA released from the hydrogels at pH 1.2 was relatively low (17.8%), while 85.2% was released at pH 7.4. According to the results, the CMC/HEC hydrogel has the potential for use in the controlled release of oral medication.


Hydrogel; Carboxymethyl cellulose; Hydroxyethyl cellulose; Controlled release; pH sensitivity; Bovine serum albumin

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126