Effect of (NH4)2SO4 Concentration on the Pyrolysis Properties of Rayon Fiber from Bamboo

Dali Cheng, Jie Gu, Bin Xu, Yanjun Li

Abstract


(NH4)2SO4 solution was employed to pre-treat regenerated cellulose fiber (from bamboo) using an ultrasonic method, and then the material was heat-treated at 250 °C. Scanning electron microscopy revealed that erosion and cracks of the fiber surface increased after being impregnated with (NH4)2SO4 combined with ultrasonic pretreatment. There was a small change in the intensity and the position of some peaks in the Fourier transform infrared spectra, and in the heat treatment, partial pyrolysis of the cellulose occurred. The data showed that for the cellulose fiber pretreated with 5 wt% (NH4)2SO4 the decomposition temperature shifted to the lower side (252 °C), and the decomposition range (180 °C to 454 °C) was wider than for the other impregnation fibers and reference. However, the rate of decomposition was different with different concentrations of (NH4)2SO4. The C content of heat-treated fiber with 5 wt% (NH4)2SO4 increased to 52%. The above results indicated that the (NH4)2SO4 was an effective catalyst to pretreat regenerated cellulose fiber in the pathway of pyrolysis.

Keywords


Bamboo cellulose; Regenerated cellulose; Pyrolysis property; TG; FTIR; Elemental analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126