Mechanical Properties of Externally Invisible Furniture Joints Made of Wood-Based Composites

Jerzy Smardzewski, Błażej Rzepa, Halil Kıliç


The aim of this investigation was to design and determine the mechanical properties of innovative, externally invisible, 3D-printed cabinet furniture joints that can be assembled without the use of tools. The cognitive objective of the study was to ascertain the stiffness and strength of designed joints that differed in the number and length of fasteners, as well as in the kind of connected panel materials. During the tests, a digital image analysis method was used for verifying analytical calculations. The finite element method was used for determining the mechanical properties of joints. Results showed that the joint designed with a dual-conical fastener was characterized by high stiffness and strength. The stiffness and strength of the joint depended on the number and length of fasteners. The low level of stress in the panel elements guaranteed durable, safe utilization of cabinet furniture made of medium density fiberboard and particleboard. In conclusion, ease of assembly and disassembly of joints without tools, external invisibility, good aesthetics, high resistance, and stiffness ensure a high potential for 3D-printed cabinet furniture joints in industry and trade.


Furniture; Invisible joint; easy-to-assemble; Design; Numerical analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126