Prediction of Five Softwood Paper Properties from its Density using Support Vector Machine Regression Techniques

Esperanza García-Gonzalo, António J. A. Santos, Javier Martínez-Torres, Helena Pereira, Rogério Simões, Paulino José García-Nieto, Ofélia Anjos


Predicting paper properties based on a limited number of measured variables can be an important tool for the industry. Mathematical models were developed to predict mechanical and optical properties from the corresponding paper density for some softwood papers using support vector machine regression with the Radial Basis Function Kernel. A dataset of different properties of paper handsheets produced from pulps of pine (Pinus pinaster and P. sylvestris) and cypress species (Cupressus lusitanica, C. sempervirens, and C. arizonica) beaten at 1000, 4000, and 7000 revolutions was used. The results show that it is possible to obtain good models (with high coefficient of determination) with two variables: the numerical variable density and the categorical variable species.


Vector machine regression; Paper properties; Kraft pulp; Pinus pinaster; Pinus sylvestris; Cupressus lusitanica; Cupressus sempervirens; Cupressus arizonica

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126