Characteristics of Pine Gasification Ash and its Effects on Chlamydomonas debaryana Growth

Rui Li, Bo Zhang, Shuangning Xiu, Hui Wang, Nana Abayie Boakye Boaten, Bryce M. Holmes, Lijun Wang, Abolghasem Shahbazi


Large amounts of ash, generated from biomass gasification, often contaminate syngas and the ecosystem. This study showed that the ash obtained from the gasification of pine wood was primarily composed of carbon (15% to 25%), minerals (~21%), and oxygen (52% to 63%), and exhibited low surface area (8.4 to 11.2 m2/g). The size of ash particles was between 600 nm and 600 μm. Calcium, potassium, and sodium were the three most common mineral elements in the ash. Leaching tests showed that adding ash to water raised the pH value from 5.7 to between 11.2 and 11.5, and, as time progressed, more mineral elements were released from the ash. For growing microalga Chlamydomonas debaryana in media containing ashes, no toxicity of pine ash was found.


Biomass ash; Gasification; Pine wood; Leaching; Microalgae; Elemental analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126