Improvement of Biodegradation of Wood Plastic Composites using Rice-Bran Mixture

Chul Choi, Chang-goo Lee, Ji-chang Yoo, Seung-min Yang, Seog-goo Kang


Wood-plastic composites (WPCs) are currently discarded using incineration treatment, which is very expensive. Hence, this study was performed to improve the biodegradation of WPCs, such that they could potentially be buried after use, and to estimate their bending strength. A biodegradation test (determining the ultimate aerobic biodegradability of plastic materials under controlled composting conditions) was performed according to ISO 14855-1. Two groups of specimens were prepared using rice-bran mixture as the bioresource. One group contained rice-bran mixtures of 5, 7.5, and 10 wt.% instead of wood flour contents, and another group contained rice-bran mixtures of 8, 16, and 24 wt.% instead of the talc component. During the 20 days of the biodegradation experiment, the WPC (control) showed 18% biodegradation, and 7.5%-rice-bran-mixture-added specimen showed the highest biodegradation of 32%. Furthermore, the bending strength (MOR) was increased by up to 140% by adding rice-bran mixture as a biodegradable component. Therefore, the rice-bran mixture improved the biodegradation and mechanical properties of WPCs.


Wood-plastic Composites; Ultimate biodegradation; Ultimate aerobic biodegradability; Rice-bran mixture; Composting

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126