Compression Test of Thermally-Treated Beech Wood: Experimental and Numerical Analysis

Gorazd Fajdiga, Boštjan Zafošnik, Bojan Gospodarič, Aleš Straže


Experimental and numerical analysis of a compression test carried out on samples of as-received and thermally-treated beech (Fagus sylvatica L.) wood is presented. In a normal climate, samples with the dimensions of 20 x 20 x 20 mm were exposed to static compressive loads parallel and transverse to the grain. Afterwards, the test was modelled using the finite element method. It was confirmed that, after thermal modification, the wood’s density decreased and the stiffness in both tested directions increased. After the thermal treatment, the strength of beech wood increased in the direction parallel to the grain and decreased in the direction transverse to the grain. Based on the comparison of experimental and numerical results, it is possible to use the hyperelastic constitutive law to reasonably model the force and displacement obtained in the compression test samples.


Thermally-treated beech wood; Mechanical properties; Numerical simulation

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126