Preparation and Characterization of Poly(lactic Acid)-based Composite Reinforced with Oil Palm Empty Fruit Bunch Fiber and Nanosilica

Yin Yin Yee, Yern Chee Ching, Shaifulazuar Rozali, Nur Awanis Hashim, Ramesh Singh


The properties of poly(lactic acid) (PLA) bio-composite films reinforced with oil palm empty fruit bunch (OPEFB) fiber and nanosilica were studied in this work. The composite films were prepared via the solvent casting method. The composites were characterized via Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, field-emission scanning electron microscopy (FESEM), tensile testing, and X-ray diffraction (XRD). Ultraviolet visible spectroscopy results revealed that the PLA-based composites and neat PLA had similar light transmittances of approximately 89%. The FTIR and FESEM results showed that OPEFB fibers and nanosilica were embedded into the PLA matrix. The tensile strength of the composites with addition of nanosilica increased with an increasing fiber load content. The XRD analysis showed that the addition of organic or inorganic silica reduced the crystallinity of the composites. The water vapor permeability test results indicated that the inorganic silica decreased the diffusion rate of water molecules through the polymer film. The OPEFB-reinforced PLA blend with additional organic silica exhibited a higher thermal stability than the composites reinforced with inorganic silica.


PLA; OPEFB fiber; Nanosilica; Tensile properties; Reinforcement; Thermal properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126