Water Hyacinth (Eichhornia crassipes) Biomass as a Biofuel Feedstock by Enzymatic Hydrolysis

Tao Ruan, Rong Zeng, Xiao-Yan Yin, Sen-Xiang Zhang, Zhong-Hua Yang


Water hyacinth (Eichhornia crassipes) is an invasive floating plant that has caused many environmental problems in Asia. Efficiently removing and utilizing this biomass has become an urgent issue. In this work, the composition of water hyacinth biomass (WHB) was analyzed with the Van Soest method. The combined cellulose and hemicellulose content reached 58.6%, and the lignin content was very low compared with other biomass. An efficient alkali pretreatment technology for WHB was developed, and the enzymatic hydrolysis of WHB to reducing sugars was investigated. With favorable hydrolysis conditions for the alkali-pretreated WHB, the cellulose conversion rate reached almost 100%. Structural changes resulting from WHB pretreatment and hydrolysis were analyzed by Fourier-transform infrared spectrometry and scanning electron microscopy. This work demonstrates that WHB is an alternative cellulose source for bioenergy production.


Water hyacinth biomass; Cellulose; Biomass utilization; Lignocellulose

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126