Synthesis and Characterization of Cellulose-graft-poly(p-dioxanone) Copolymers via Homogeneous Ring-Opening Graft Polymerization in Ionic Liquids

Li Zhang, Yanzhu Guo, Jinghui Zhou, Guangwei Sun, Ying Han, Xiaohui Wang


Cellulose-graft-poly(p-dioxanone) copolymers (cellulose-g-PPDO) were homogeneously prepared via ring-opening graft polymerization (ROP) between p-dioxanone (PDO) and hydroxyl groups of cellulose using the catalyst 4-dimethylaminoptridine (DMAP) in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl). Chemical structures and physical properties of the cellulose-g-PPDO copolymers were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H, 13C, 1H-13C 2D heteronuclear single quantum correlation (HSQC)-NMR)), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) techniques. By adjusting the reaction conditions, including the molar ratio of PDO to the anhydroglucose unit (AGU), amount of DMAP, and reaction temperature and time, the structure of the graft copolymers could be altered, and a series of copolymers with molar substitutions (MSs) in the range of 1.09 to 6.97 and polymerization degrees (DPs) varying from 1.85 to 2.88 were obtained. The graft copolymers exhibited a noticeably lower thermal stability than cellulose. After the attachment of PPDO groups, the crystalline structure of cellulose was disrupted because of the elimination of the inter- and intra-molecular hydrogen bonds of cellulose chains.


Cellulose; Ionic liquids; Poly(p-dioxanone); ROP

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126