Synthesis and Application of a Multifunctional Fluorescent Polymer Based on Coumarin

Guanghua Zhang, Hua Zheng, Guojun Liu, Peng Wang, Rui Xiang


A multifunctional fluorescent polymer based on coumarin (MFPC) was synthesized using a four-step synthetic route. To obtain the target compound, 7-amino-4-methylcoumarin, coumarin fluorescent monomer (CFM), and ultraviolet absorber monomer (UVAM) were prepared. By the reaction of CFM, UVAM, trimethyl-2-methacroyloxyethylammonium chloride (DMC), and acrylamide (AM) as a linker, a new multifunctional fluorescent polymer was synthesized. The structure of the MFPC was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H-NMR) spectroscopies. The optical properties of MFPC were measured by ultraviolet-visible (UV-vis) and fluorescence spectroscopies, in aqueous solution. The integration effect between MFPC and paper was tested by scanning electron microscopy. The application performance of MFPC on paper was evaluated by measuring the surface strength, smoothness, and whiteness using the printability tester and the UV accelerated aging test. Results indicated that the MFPC had good solubility in water. It also exhibited a positive effect on the light stability and surface strength of paper as a light stabilizer, fluorescent brightener, and surface sizing agent.


7-Amino-4-methyl coumarin; Multifunctional fluorescent polymer; Light stability; Surface strength; High-yield pulp

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126