Chemical Modification of Oil Palm Mesocarp Fiber by Methacrylate Silane: Effects on Morphology, Mechanical, and Dynamic Mechanical Properties of Biodegradable Hybrid Composites

Chern Chiet Eng, Nor Azowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan Md. Zin Wan Yunus


Effects of modifying oil palm mesocarp fibers (OPMF) by methacrylate silane on polylactic acid (PLA)/ polycaprolactone (PCL)/clay/OPMF hybrid composites were investigated. The composites were prepared by a melt blending technique and characterized by dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The silane-treated OPMF hybrid composites showed better tensile strength, tensile modulus, and elongation at break than unmodified OPMF hybrid composites. DMA analysis showed an increase in storage modulus when silane-treated OPMF was added to a hybrid composite. The loss modulus curve showed that the incorporation of silane-treated OPMF into a hybrid composite shifted the two glass transition temperatures (Tg) of composites closer to each other. The low tan δ peak indicated good fiber/matrix adhesion for the silane-treated OPMF hybrid composites. SEM micrographs revealed that silane-treated OPMF hybrid composites showed better fiber/matrix adhesion than unmodified OPMF hybrid composites because of absence of gap between silane-treated OPMF and the matrix in the composite.


Oil palm mesocarp fiber; Chemical modification; Silane coupling agent; Hybrid composites

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126