Production of 5-Hydroxymethylfurfural from Fructose Catalyzed by Sulfonated Bamboo-Derived Carbon Prepared by Simultaneous Carbonization and Sulfonation

Zhongquan Shen, Ximeng Yu, Jizhong Chen


A novel sulfonated bamboo-derived carbon (SBC) was prepared through a one-pot simultaneous carbonization and sulfonation method using p-toluenesulfonic acid as the sulfonating agent. This method was used in place of the two-step method of high temperature carbonization followed by sulfonation, in order to reduce energy consumption and avoid the use of substantial amounts of strong liquid acid. The as-prepared catalyst bearing SO3H, COOH, and phenolic OH groups demonstrated efficient catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural (HMF), achieving 92.1% HMF yield in a mixture of tetrahydrofuran (THF) and dimethylsulfoxiden (DMSO) (volume ratio of THF/DMSO 3/7). The mixture had a fructose concentration of 0.08 g·mL-1 with a catalyst amount of 10% weight of fructose at 140 °C in 60 min. No distinct activity drop was observed after the initial deactivation during 5 recycling runs, confirming a good stability of the prepared catalyst. Moreover, kinetic data showed that SBC promoted fructose dehydration to HMF may follow pseudo-first order kinetics with the activation energy of 43.6 kJ·mol-1 under investigated conditions. The convenient catalyst preparation method and excellent catalytic performance of the catalyst provide an easy-handling and eco-friendly strategy for crude biomass utilization in catalyst production.


Bamboo; Sulfonated carbon; Dehydration; Fructose; 5-Hydroxymethylfurfural

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126