Effect of Surface Treatment on the Physical, Chemical, and Mechanical Properties of Palm Tree Leaf Stalk Fibers

Arun Kumar Rout, Jnanaranjan Kar, Dipak Kumar Jesti, Alekh Kumar Sutar

Abstract


A new class of leaf stalk fibers of the palm tree were extracted and treated with a 5% NaOH solution for 1 h, 2 h, 6 h, and 12 h. The treated fibers were then characterized by tensile strength testing, chemical analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and solid state NMR. The tensile strength of the fibers was improved with an alkali treatment, and the 6 h treatment resulted in the maximum fiber strength. The maximum cellulose content was present in the 6 h-treated fibers; cellulose content was reduced with a longer treatment (12 h). Similarly, SEM, FTIR, XRD, and NMR confirmed the removal of hemicelluloses from the raw fiber surface and the formation of new hydrogen bonds between the cellulose fibril chains with respect to the duration of the treatment. The 5% alkali treatment also improved the fiber density from 0.85 gm/cc (raw fiber) to 1.05 gm/cc, 1.13 gm/cc, 1.17 gm/cc, and 1.25 gm/cc after the 1 h, 2 h, 6 h, and 12 h treatments, respectively.

Keywords


Palm fiber; Alkali treatment; Tensile strength; XRD; FTIR; SEM; NMR

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126