Effect on Tensile Strength of Wood-based Carbon Fiber Impregnated by Boron

Yue Zhang, Wenbo Zhang, Wei Lu

Abstract


Wood-based carbon fiber derived from liquefied wood has the disadvantages of low mechanical strength and unstable performance. To improve its mechanical properties, wood-based carbon fiber precursors were impregnated with 5 wt.% and 8 wt.% boric acid solutions for 1 h and then carbonized at 900 °C for 1 h. The effect of boron content on fiber tensile strength and microstructure was investigated through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The tensile strength of wood-based carbon fibers impregnated with 5 wt.% boric acid reached 0.468 GPa, an increase of 44.89% compared with the untreated samples. In addition, the amount of graphitoidal crystal and the degree of graphitization increased with the boric impregnation. Furthermore, boron in the form of a boron-carbon solid solution in the graphene layer of carbon fibers effectively improved the tensile strength of wood-based carbon fibers.

Keywords


Carbon materials; Fiber technology; Microstructure; Crystal structure; Tensile strength

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126