Two-Step Hot-Compressed Water Treatment of Douglas Fir for Efficient Total Sugar Recovery by Enzymatic Hydrolysis

Hiroyuki Inoue, Shinji Fujimoto, Tsuyoshi Sakaki


The non-catalytic hydrothermal pretreatment of softwood is generally less effective for subsequent enzymatic hydrolysis. In this study, the efficacy of hot-compressed water (HCW) treatment of Douglas fir was investigated between 180 °C and 260 °C, allowing solubilization of the cellulose components. The enzymatic digestibility of cellulosic residues increased significantly under HCW conditions > 250 °C, and the enhanced glucan digestibility was closely related to the decomposition of the cellulose component. Combination of the first-stage HCW treatment (220 °C, 5 min) to recover hemicellulosic sugars with the second-stage HCW treatment (260 °C, 5 min) to improve cellulose digestibility gave a total sugar recovery of 56.2% based on the dried raw materials. This yield was 1.4 times higher than that from the one-step HCW-treated sample (260 °C, 5 min). Additionally, an enzymatic hydrolysate from the two-step HCW-treated sample exceeded 90% of the ethanol fermentation yield based on the total sugars present in the hydrolysates. These results suggest the potential of the two-step HCW treatment of softwood as a pretreatment technology for efficient total sugar recovery and ethanol production.


Douglas fir; Hot-compressed water pretreatment; Hydrothermal pretreatment; Softwood; Enzymatic hydrolysis; Ethanol production

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126