Determining the Influence of Sample Thickness on the High-Temperature Drying of Beech Wood (Fagus sylvatica L.)

Ivan Klement, Tatiana Huráková

Abstract


Drying time reduction has always been a major concern in the drying process and is achievable by increasing the temperature of the surrounding air. To optimize the quality of the resulting material, drying conditions must be enhanced to reach a balanced correlation between the drying time and quality of the dried timber. This paper analyses the high-temperature drying of wood and the optimization of this process, as well as the effect that drying temperature and thickness of beech timber specimens has on the drying process. The high-temperature drying of beech wood was carried out by means of hot air in a laboratory drier for maximum 33 hours at maximum temperatures of 130 and 150 °C. The initial moisture content of samples was approximately 70%. The resulting drying times were short in comparison to conventional warm-air drying, which is caused by the high intensity of drying during the removal of bound water. Finally, it can be concluded that the thickness of the dried specimens is a significant factor in the process of high-temperature drying of beech wood.

Keywords


High-temperature drying; Moisture gradient; Temperature; Cross warping

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126